Références

[1] V.B. Georgiev, J. Cuenca, F. Gautier, L. Simon, V.V. Krylov, Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect, Journal of Sound and Vibration, Vol. 330 (2011), 2497–2508.

[2] F. Gautier, J. Cuenca, V. Krylov, L. Simon, Experimental investigation of the acoustic black hole effect for vibration damping in elliptical plates, Congrès Acoustics’08, Paris, 24-29 juin 2008.

[3] V. Denis, F. Gautier, A. Pelat, J. Poittevin, Measurement and modelling of the reflection coefficient of an acoustic black hole termination, Journal of Sound and Vibration, Vol. (349) (2015), 67–79.

[4] V. Denis, A. Pelat, F. Gautier, B. Elie, Modal Overlap Factor of a beam with an Acoustic Black Hole termination, Journal of Sound and Vibration, Vol. 333 (12), 2014, 2475–2488.

[5] V. Denis, , A. Pelat, F. Gautier, Scattering effects induced by imperfections on an acoustic black hole placed at a structural waveguide termination, Journal of Sound and Vibration, Vol. 362, (2016), 56–71.

[6] J. Poittevin, F. Gautier, C. Pezerat, P. Picart, High-speed holographic metrology: principle, limitations and application to vibro-acoustics of structures, Opt. Eng. 55(12), 121717, 2016.

[7] S. Foucaud, G.Michon, Y. Gourinat, A. Pelat, F.Gautier, Artificial cochlea and acoustic black hole travelling waves observation: Model and experimental results, Journal of Sound and Vibration, 333 (15), 2014, p. 3428–3439

[8] V. Denis, A. Pelat, C. Touzé, F. Gautier, Improvement of the acoustic black hole effect by using energy transfer due to geometric nonlinearity, International Journal of Non-Linear Mechanics, Available online 1 December 2016, ISSN 0020-7462, http://dx.doi.org/10.1016/j.ijnonlinmec.2016.11.012.

[9] O. Aklouche, A. Pelat, S. Maugeais, F. Gautier, Scattering of flexural waves by a pit of quadratic profile inserted in an infinite thin plate, Journal of Sound and Vibration, Vol. 375 (2016), 38–52.

[10] P. Butaud, E. Foltête, M. Ouisse, Sandwich structures with tunable damping properties: On the use of Shape Memory Polymer as viscoelastic core, Composite Structures 153 (2016) 401–408

[11] P. Butaud. Contribution à l’utilisation des polymères à mémoire de forme pour les structures à amortissement contrôlé. PhD thesis, Université de Franche-Comté, France, 2015.

[12] P. Butaud, M. Ouisse, G. Chevallier, E. Foltête, Design of thermally adaptive composite structures for damping and stiffness control, SPIE Smart Structures/NDE, 26-30 mars 2017, Portland, USA.

[13] K. Billon, Composites périodiques fonctionnels pour l’absorption vibroacoustique large bande, thèse de l’Université de Franche-Comté, 2016.

[14] K. Billon, M. Ouisse, E. Sadoulet-Reboul, M. Collet, G. Chevallier, A. Khelif, Design and experimental validation of an adaptive phononic crystal using highly dissipative polymeric material interface, SPIE Smart Structures/NDE, 26-30 mars 2017, Portland, USA.

[15] J. Cuenca, Wave models for the flexural vibrations of thin plates: Model of the vibrations of polygonal plates by the image source method, Vibration damping using the acoustic black hole effect. PhD Thesis,Université du Maine, France, 2009.

[16] D. Chronopoulos, I. AntoniadisM. Collet, M. Ichchou, Enhancement of wave damping within metamaterials having embedded negative stiffness inclusions, Wave Motion. 05, 2015.

[17] B. S Beck, K. A Cunefare, M. Collet, The power output and efficiency of a negative capacitance shunt for vibration control of a flexural system, Smart Materials and Structures. 22(6), 2013.

[18] S.Livet,M. Collet, M. Berthillier, P. Jean, J.M. Cote, Structural Multi-Modal Damping by Optimizing Shunted Piezoelectric TransducersEuropean Journal of Computational Mechanics, 20 (1-4), 73-102, 2011.